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Derived from the Boltzmann equation, the neutron transport equation describes the motions and interactions of neutrons with nu-
clei in nuclear devices such as nuclear reactors. The collision or fission effect are described as integral terms which arrive in an
integro-differential neutron transport equation (IDNT). Only for mono-material or simple geometries conditions, elegant approx-
imation can simplify the transport equation to provide analytic solutions. To solve this integro-differential equation becomes a
practical engineering challenge. Recent development of deep-learning techniques provides a new approach to solve them but for
some complicated conditions, it is also time consuming. To optimize solving the integro-differential equation particularly under
the deep-learning method, we propose to convert the integral terms in the integro-differential neutron transport equation into their
corresponding antiderivatives, providing a set of fixed solution constraint conditions for these antiderivatives, thus yielding an ex-
act differential neutron transport equation (EDNT). The paper elucidates the physical meaning of the antiderivatives and analyzes
the continuity and computational complexity of the new transport equation form. To illustrate the significant advantage of ENDT,
numerical validations have been conducted using various numerical methods on typical benchmark problems. The numerical
experiments demonstrate that the EDNT is compatible with various numerical methods, including the finite difference method
(FDM), finite volume method (FVM), and PINN. Compared to the IDNT, the EDNT offers significant efficiency advantages,
with reductions in computational time ranging from several times to several orders of magnitude. This EDNT approach may also
be applicable for other integro-differential transport theories such as radiative energy transport and has potential application in
astrophysics or other fields.
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1 Introduction

The neutron transport equation is the fundamental equation
in nuclear reactor core physics, and solving it efficiently and

*Corresponding authors (Dong Liu, email: liudong@uestc.edu.cn; Kai Wang, email:
wangkai1@zju.edu.cn; Fei Wang, email: feiwang.xjtu@xjtu.edu.cn)

accurately is essential for reactor engineering design, devel-
opment, and operational support. The generalized neutron
transport equation, which is in integro-differential form, cap-
tures the anisotropy of the scattering source and is widely

https://doi.org/10.1007/s11433-024-2642-3
phys.scichina.com
link.springer.com
https://doi.org/10.1007/s11433-024-2642-3
mailto:{liudong@uestc.edu.cn}
mailto:wangkai1@zju.edu.cn
mailto:feiwang.xjtu@xjtu.edu.cn


D. Liu, et al. Sci. China-Phys. Mech. Astron. July (2025) Vol. 68 No. 7 270511-2

applicable. The equation is expressed as:
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where Ψ
(
r, Ω̂, E, t

)
is the neutron angular flux at time t, po-

sition r, angle Ω̂, and energy E. Note that r represents the
position vector and Ω̂ represents the angular vector, which
includes the direction cosine µ and the azimuthal angle φ. Σt

is the total cross section; v is the neutron velocity; Qe is the
external source; f

(
r, Ω̂′, E′ → Ω̂, E

)
is the scattering func-

tion; Σs is the scattering cross section; Σ f is the fission cross
section; ν is the number of neutrons produced per reaction;
and χ(E) is the fission neutron energy spectrum. The scat-
tering source can be anisotropic, while the fission source is
normally isotropic.

In steady-state conditions without external sources, the
multigroup transport equation [1] can be expressed as eq. (2):
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)
dΩ̂′, (2)

where keff denotes the effective multiplication factor, while g
represents the energy group index, with g = 1, 2, · · · ,G. The
term Σs,g′→g(r, Ω̂′ → Ω̂) refers to the scattering cross-section
from energy group g′ to g, and from direction Ω̂′ to Ω̂.

Solving the neutron transport equation in its integral form
is an extremely complex task. To address this, various meth-
ods have been developed. In practical, the neutron transport
equation can be expressed in various mathematically equiva-
lent forms, including the integro-differential form, integral
form, adjoint form, and even-parity form, among others
[1-3]. Meanwhile, The neutron transport equation are usu-
ally solved by the traditionally deterministic methods, such
as the discrete ordinates method (sN) , the method of char-
acteristics (MOC) [2-5] and the spherical harmonics method
(Pn), as well as stochastic methods represented by the Monte
Carlo approach [1]. The form of the transport equation is
closely tied to the numerical methods employed to solve it.
A specific form of the transport equation often corresponds
to a matching numerical discretization method. The specific
form of the transport equation is also affected by considering

factors such as the geometry, the number of energy groups
discretized, the characteristics of the scattering sources, and
the presence of external sources.

In the past decade, artificial intelligence, specifically deep
learning methods, has become popular for solving partial
differential equations due to its advantages, such as well-
structured computation, strong continuity properties, and ex-
cellent data assimilation capabilities [6-9]. Progress has also
been made in using deep learning methods to solve the multi-
group complex geometries neutron diffusion equation, a sim-
plified form of the neutron transport equation [9-13]. Ex-
ploratory research has also begun on using deep learning
methods to solve neutron transport equations with structured
geometries and few energy groups [14, 15]. Ref. [14], in-
spired by the traditional sN method [2, 3], discretizes the
angular variable of the integrand and approximates the in-
tegral using Gaussian quadrature [2, 3], resulting in some
systematic errors. Ref. [15] proposes a deep learning-based
variable-order method that solves simplified transport equa-
tions with isotropic scattering and fission sources in few-
group structured geometries. However, this method can not
deal with anisotropic scattering sources which commonly en-
countered in practical reactor. Further research for complex
geometries and multi-group transport equations is urgently
needed.

However, most existing forms of the neutron transport
equation contain multiple integral terms for scattering and
fission sources over energy and angular variables, which
brings significant challenges for applying deep learning
methods to solve these equations. The integral terms are tra-
ditionally approximated as finite sums as followings:∫ b

a
Ψ (x) =

n∑
j=1

w jΨ
(
x j

)
. (3)

Current studies show that the traditional forms of the neu-
tron transport equation do not align well with deep learn-
ing numerical methods, Firstly, eq. (3) introduces system-
atic errors due to the finite-sum approximation of the inte-
gral terms. Secondly, for deep learning methods, for each
machine learning sample point set by eqs. (1) and (2), a fi-
nite sum should be computed for all the other sample points,
in addition to performing the differentiation operation itself.
When the machine learning sample space is large, this char-
acteristic can significantly impact computational efficiency,
resulting in very long training time. This represents a tech-
nical challenge for deep learning numerical methods used to
solve the neutron transport equations.

Therefore, this paper proposes an exact differential form of
the neutron transport equation. The technical approach is to
convert the integral terms in the integro-differential neutron
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transport equation into their corresponding antiderivatives,
thereby converting the neutron transport equation into an ex-
act differential form. The physical meaning of the antideriva-
tives is provided, and the continuity and computational com-
plexity of the new transport equation form are analyzed. Fi-
nally, numerical validations are performed for typical geome-
tries using finite difference, finite volume, and deep learning
methods to solve the EDNT equation. The results are com-
pared with those obtained by solving the original form of the
equation, and the performance of the exact differential form
is evaluated.

Given that the integro-differential form (1) and (2) of the
transport equation is concise and comprehensive, including
isotropic fission sources and anisotropic scattering sources,
this paper uses it as the basis for deriving the exact differen-
tial neutron transport equation. The transformation method
can also be extended to other forms of transport equations.

2 Derivation of the exact differential form of the
neutron transport equation

The fundamental principle in constructing the exact differen-
tial form of the neutron transport equation is to do antideriva-
tive transformations on all integral terms in the neutron trans-
port equation. This involves converting the integrands into
their corresponding antiderivatives. If the transport equation
has a multiple integral form, the multiple integral terms will
be transformed to the corresponding antiderivatives by means
of higher dimensional or cumulative transformations. Con-
sequently, the integro-differential form of neutron transport
equation can be transformed into an exact differential form.

2.1 Derivation of the continuous energy neutron trans-
port equation

According to the principles of calculus [16], a continuous
integrand has a specific antiderivative with respect to the
angular variable Ω̂′ and energy E′. Referring to the two-
dimensional Newton-Leibniz formula [16], we perform an
antiderivative transformation on the scattering source terms
in the neutron transport equation (1), as detailed in Ap-
pendix A1.1. The resulting expression is

Qs =

∫ E1

E0

∫ Ω̂1

Ω̂0
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(
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)
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)
. (4)

Similarly, for the fission source, as detailed in Ap-
pendix A1.2, we have
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νΣ f
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(
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)
,

(5)

where Ω̂1, Ω̂0 are the upper and lower limits of the angular
integral, and E1, E0 are the upper and lower limits of the en-
ergy integral. The specific meanings of Fc,s and Fc, f can be
found in Appendix A1.

Substituting eqs. (4) and (5) into eq. (1), we obtain the
general exact differential form of the neutron transport equa-
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(6)

Thus, eq. (6) represents the general exact differential form
of the neutron transport equation. It is a system of equa-
tions consisting of three equations, three unknown functions,
and two boundary conditions. It should be noted that if the
angular is two-dimensional variable, it is generally repre-
sented by the direction cosines µ and the azimuthal angle
φ. In this case, the scattering/fission source terms in eq. (1)
involve triple integrals, which can be treated using higher-
dimensional Newton-Leibniz formulas or cumulative trans-
formations.

2.2 Derivation of the multigroup neutron transport
equation

2.2.1 Derivation of the multigroup anisotropic scattering
equation

To simplify calculations, the anisotropic scattering source in
eq. (2) is typically expanded using Legendre polynomials.
The scattering source in the multigroup formulation [1] can
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be expressed as:
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where Ψl,m
g′ represents the neutron flux moment, and Ym

l

(
Ω̂
)

is the spherical harmonic function.
For the multigroup neutron transport equation (2), we ap-

ply the antiderivative transformation to the neutron flux mo-
ment in the scattering term and the fission source term to de-
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(8)

The specific meanings of F l,m
c,s,g′ and Fc, f ,g′ , and further details

of derivation process can be found in Appendix A2.1.

2.2.2 Derivation of the multigroup isotropic scattering neu-
tron transport equation

In practical engineering, for cases where neutron anisotropy
is not significant (e.g., neutron flux calculation in the core of
a large pressure water reactor), the scattering source is of-
ten assumed to be isotropic to simplify the calculation of the
neutron transport equation. Alternatively, transport correc-
tion methods are applied to modify the cross sections, allow-
ing the isotropic scattering source form of the equation to
approximate the precision of the anisotropic neutron trans-
port equation. Therefore, it is necessary to derive the multi-
group isotropic scattering neutron transport equation. With
isotropic scattering cross sections, the scattering source is
independent of the angular variable and can be written as
Σs,g′→g(r), reducing eq. (2) to:

Ω̂ · ∇Ψg

(
r, Ω̂

)
+ Σt,g

(
r, Ω̂

)
Ψg

(
r, Ω̂

)
=

G∑
g′=1

(
Σs,g′→g (r)+

χg

4πkeff

(
νΣ f (r)

)
g′

)∫
Ψg′

(
r, Ω̂′

)
dΩ̂′.

(9)

By transforming the integral term
∫
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)
dΩ̂′, as de-

tailed in Appendix A2.2, we can obtain
Ω̂ · ∇Fc,g

(
r, Ω̂

)′
+ Σt,g

(
r, Ω̂

)
Fc,g

(
r, Ω̂

)′
=

G∑
g′=1

(
Σs,g′→g(r) +

χg

4πkeff

(
νΣ f (r)g′

)
Fc,g′

(
r, Ω̂1

))
,

Ω̂′ = Ω̂0, Fc,g′
(
r, Ω̂0

)
= 0, g′ = 1, 2, 3, · · · .

(10)

The specific meanings of Fc,g can be found in Ap-
pendix A2.2. Comparing with eqs. (6) and (8), the form
of eq. (10) is significantly simplified.

3 Analysis and evaluation of the exact differen-
tial form of the neutron transport equation

3.1 Physical meaning of the antiderivatives

The antiderivatives in the exact differential form equations
(6), (8), and (10), each have practical physical signifi-
cance, which is somewhat different according to the cor-
responding integrand of the antiderivative. In eq. (6),
Fc,s

(
r, Ω̂, E, Ω̂′, E′, t

)
represents the total contribution of

scattered neutrons arriving at angle Ω̂ and energy E at lo-
cation r and time t, where the neutrons have been scat-
tered from angles Ω̂0 to Ω̂′ and energy E0 to E′. Similarly,
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(
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)
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arriving at angle Ω̂ and energy E. Fc, f

(
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)
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cation r at time t from angles Ω̂0 to Ω̂′ and energy E0 to
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(
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)
gives the total number of fission
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Ω̂0 < Ω̂m < Ω̂n < Ω̂1 and E0 < Em < En < E1, the
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(
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)
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(
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resents the total scattering neutrons within the energy range
Em-En and angular range Ω̂m- Ω̂n that arrive at angle Ω̂
and energy E at location r. Similarly, Fc, f

(
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)
−
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(
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)
represents the total number of fission neu-

trons produced within the energy range Em-En and angular
range Ω̂m-Ω̂n.

For the multigroup equation (8), F l,m
c,s,g′

(
r, Ω̂

)
is the inte-

gral of the angular flux moment of group g′ at location r,
over angles from Ω̂0 to Ω̂. Similarly, F l,m

c,s,g′
(
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)
represents

the total angular flux moment for that group. Fc, f ,g′
(
r, Ω̂

)
represents the integral of the angular flux for group g′, and
Fc, f ,g′

(
r, Ω̂1

)
represents the scalar flux for that group at r.

Likewise, in eq. (10), Fc,g′
(
r, Ω̂

)
is the integral of the

angular flux for group g′ over angles from Ω̂0 to Ω̂, and
Fc,g′

(
r, Ω̂1

)
represents the scalar flux at r for group g′.
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3.2 Continuity analysis of the exact differential form of
the neutron transport equation

The antiderivative transformation performed in sect. 2 is
based on the assumption that the integrand is continuous.
However, in practical applications, the cross sections of core
materials are not always continuous, which poses challenges
when solving the exact differential form of the neutron trans-
port equation.

The illustration of discontinuous cross sections in reactor
core materials is shown in Figure 1. The cross sections of
the fuel region, cladding, and water region in a typical core
differ significantly. At the boundaries between these regions,
the cross sections are discontinuous. Therefore, for the an-
tiderivatives involving the discontinuous cross sections in eq.
(6), the following equations are no longer valid:

∂2Fc,s

(
r, Ω̂, E, Ω̂′, E′, t

)
∂Ω̂′∂E′

= Σs(r, E′) f
(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
, (11)

and

∂2Fc, f

(
r, Ω̂′, E′, t

)
∂Ω̂′∂E′

= νΣ f
(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
. (12)

However, for multigroup equations (8) and (10), which do
not involve cross sections in the integrand, these equations
still hold. For eq. (6), despite cross-section discontinuities,
the neutron angular flux remains continuous at the interfaces
[1-3]. This continuity of angular flux in the specified neutron
direction is widely applied in current practical problems. An
exact differential form of the neutron transport equation can
still be constructed based on this continuity. The domain can
be divided into Nsd sub-domains based on cross section dif-
ferences, and angular flux density continuity boundary con-
ditions can be used at the interfaces. The j-th sub-domain
should satisfy the following system of equations:

Figure 1 (Color online) Illustration of discontinuous cross sections in re-
actor core materials.
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(
r j, Ω̂

′, E′, t
)

∂Ω̂′∂E′
= ν jΣ j, f

(
r j, E′

)
Ψ j

(
r j, Ω̂

′, E′, t
)
,(

Ω̂′ = Ω̂0

)
∪ (E′ = E0) ,

F j,c,s

(
r j, Ω̂, E, Ω̂′, E′, t

)
= 0,

F j,c, f

(
r j, Ω̂

′, E′, t
)
= 0,

Ψ j

(
r j→ j+1, Ω̂, E, t

)
= Ψ j+1

(
r j+1→ j, Ω̂, E, t

)
.

(13)

Among them, r j→ j+1 represents the position r located in sub-
domain j, and the distance to the adjacent interface of sub-
domain j + 1 is minimized.

In response to this situation, different neural networks can
represent different subdomains, and by using the condition
of continuous angular flux between subdomains at the inter-
faces, a set of differential equations covering the entire region
can be formed, thereby solving these equations with discon-
tinuities cross-sections. Relevant implementation strategies
can be referred to in ref. [17]. The output of the neural net-
work in the j-th sub-domain is given by

Ψ j(r j, Ω̂, E, t) = N j(r j, Ω̂, E, t), j = 1, 2, . . . ,Nsd. (14)

The final solution will be obtained as:

Ψ(r j, Ω̂, E, t) =
Nsd∪
j=1

Ψ j(r j, Ω̂, E, t). (15)

At the interfaces, the angular flux obey the following condi-
tions as described in eq. (13):

Ψ j

(
r j→ j+1, Ω̂, E, t

)
= Ψ j+1

(
r j+1→ j, Ω̂, E, t

)
. (16)

3.3 Computational complexity analysis

Computational complexity is an important metric for eval-
uating the efficiency of numerical methods [18]. The fac-
tors affecting the complexity of solving neutron transport
equations primarily include the computation of differential
terms, integral terms, variable discretization, and the iterative
solving process. The most commonly used original integro-
differential form (2) and the corresponding exact differential
form (8) of the multi-group steady-state neutron transport
equation are discussed below as examples respectively, and
the other equation forms can be analysed similarly.
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3.3.1 Complexity analysis of the original integro-differential
form of the transport equation

(1) Analysis of differential terms calculation
In eq. (2) , the specific form of differential term Ω̂ · ∇Ψg

depends on the dimension of r. Each iteration of every differ-
ential form, discrete grid point and machine learning sample
point in the equation needs one numerical differentiation cal-
culation. By using Euler’s method, the computational com-
plexity of each differentiation is O(1). For instance, in the
Cartesian coordinate system, Ω̂ · ∇Ψg = µ

∂Ψg

∂x + η
∂Ψg

∂y + ξ
∂Ψg

∂z ,
For each grid/sample point, three differentiation calculations
are required per iteration. Therefore, the overall complexity
of the differential term still remains O(1).

(2) Analysis of integral terms calculation
For the scattering source term in the multigroup neutron

transport equation (2), the integral term is the neutron flux

Ψ
l,m
g =

∫ Ω̂1

Ω̂0
Ym

l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
dΩ̂′. By using the trapezoidal

rule, each iteration of every grid point or sample point re-
quires calculating the integral of Ym

l

(
Ω̂′

)
Ψg

(
r, Ω̂′

)
over the

interval
[
Ω̂0, Ω̂1

]
. If the angular interval is divided into

NΩ̂ subintervals, the computational complexity of each in-
tegral calculation is O

(
NΩ̂

)
. Based on eq. (7), a total of

G × L × (2L + 1) integral calculations are required, where L
is the maximum value in eq. (7). Typically, both G and L are
constants, so the overall computational complexity remains
O

(
NΩ̂

)
. If Ω̂ represents two-dimensional angle variable, ac-

cording to the principle of cumulative transformations, the
number of numerical integrations required for the integrand
becomes Nµ × Nφ, and the complexity is O

(
Nµ × Nφ

)
, where

Nµ and Nφ represent the divisions of the cosine of the direc-
tion and the azimuthal angle respectively. For the continuous
energy steady-state neutron transport equation, the computa-
tional complexity is O

(
Nµ × Nφ × NE

)
, where NE is the num-

ber of energy discretization points.
(3) Analysis of variable discretization
Regardless of the numerical method, variables must be

discretized. In finite difference or finite volume methods,
the grid is discretized, whereas in deep learning methods,
machine learning sample points are discretized. The com-
putational complexity is directly related to the discretiza-
tion dimension. Let the independent variable r of the un-
known function Ψg(r, Ω̂) in eq. (2) be divided into Mr subin-
tervals/sample points and Ω̂ is divided into MΩ̂ subinter-
vals/sample points, the total number of discretization points
is Mr ×MΩ̂, and the total number of calculations is Mr ×MΩ̂.
Naturally, as the dimensions of r and Ω̂ increase, the number
of computations will increase accordingly. For the continu-
ous energy steady-state neutron transport equation, the total
number of discretization points is Mr ×MΩ̂ ×ME , where ME

is the number of energy discretization points.

(4) Analysis of the iterative process
For traditional methods like finite difference and finite vol-

ume, after the equation is discretized into a matrix form, it-
erative methods are employed for solving. Common itera-
tive methods include Jacobi and Gauss-Seidel iterations [19],
each with its own computational complexity. For equations
with integral terms like eq. (2), the discretized matrix tends
to be dense, meaning its has higher computational complex-
ity [20].

In deep learning methods, the process of machine learning
involves adjusting neural network weights to minimize the
weighted loss function, which is composed of the equation
and boundary conditions, to approximate the numerical solu-
tion of eq. (2). The convergence process in deep learning has
a certain ”black box” characteristics, making it difficult to
analyze quantitatively and mainly dependent on experimen-
tal testing.

3.3.2 Complexity analysis of the exact differential form of
the transport equation

(1) Analysis of the differential terms calculation
In the exact differential form of eq. (8), as discussed pre-

viously, the computational complexity for a single numerical
differentiation is O(1). However, compared with eq. (2), the

calculation of
dFl,m

c,s,g′(r,Ω̂′)
dΩ̂′

and dFc, f ,g(r,Ω̂′)
dΩ̂′

are added in the exact
differential form, both of which have a computational com-
plexity of O(1). Since these differentiation calculations are
independent, the total complexity remains O(1).

(2) Analysis of variable discretization
Similar to the previous section, for Ψg(r, Ω̂), F l,m

c,s,g′ (r, Ω̂),
and Fc, f ,g′(r, Ω̂) of eq. (8), after discretizing the indepen-
dent variables r, Ω̂ into Mr subintervals/sample points and
MΩ̂ subintervals/sample points, the total number of compu-
tations is Mr × MΩ̂. Again, as the dimensions of r and Ω̂
increase, the number of computations increases proportion-
ally.

(3) Analysis of the iterative process
For traditional methods like finite difference and finite vol-

ume, after the exact differential form (8) is discretized, the re-
sulting matrix is sparse, meaning the iterative solving process
has a significantly lower complexity compared to the matrix
discretized from the integro-differential equation [20].

In deep learning methods, the exact differential form
(8) can use multiple neural network outputs to represent
Ψg(r, Ω̂), F l,m

c,s,g′ (r, Ω̂), and Fc, f ,g′(r, Ω̂). Machine learning can
then be performed using a composite weighted loss function.
The computational cost is similar to that of the single neural
network output representing Ψg(r, Ω̂) for eq. (2).

The analysis of the continuous energy steady-state neutron
transport equation is consistent with sect. 3.3.1.
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3.3.3 Comparison and analysis of computational complexity

From the above analysis, considering only the compu-
tation of differential and integral terms as well as vari-
able discretization, the overall complexity of the original
integro-differential form of the transport equation (2) is
OIDNT

(
Mr × MΩ̂ × NΩ̂

)
, while the complexity of the ex-

act differential form (8) is OEDNT
(
Mr × MΩ̂

)
. Assuming

the number of discretization points for the variable Ω̂, de-
noted by MΩ̂, is equal to the number of divisions in the
integration domain, denoted by NΩ̂ (i.e., MΩ̂ = NΩ̂), the
complexity OEDNT

(
Mr × MΩ̂

)
is significantly smaller than

OIDNT

(
Mr × M2

Ω̂

)
. Table 1 provides a detailed comparison

of the computational complexities of three numerical meth-
ods for both discrete and continuous energy equation. Addi-
tionally, considering the iterative process, the iteration count
of EDNT equation required for solving the sparse matrix is
significantly lower than that of IDNT equation with dense
matrix, thus reducing the iterative calculation time. It should
be noted that the PINN method for solving neutron transport
equations, whether IDNT or EDNT, involves a deep learning
process with neural networks, which is widely recognized in
academia as having a certain degree of non-interpretability.
Therefore, it is currently difficult to provide a quantified mea-
sure of the computational complexity of PINN. This effi-
ciency advantage is particularly evident for high-dimensional
problems and deep learning methods that require large num-
ber of training iterations.

4 Numerical verification

4.1 Critical single-group slab geometry transport prob-
lem

Problem description The single-group slab geometry
transport equation:

µ
∂Ψ(x, µ)
∂x

+ Σt(x)Ψ(x, µ)

=
1
2

(
Σs(x) +

νΣ f (x)
keff

) ∫ 1

−1
Ψ

(
x, µ′

)
dµ′, (17)

where x is the slab thickness, and µ is the direction cosine in
Cartesian coordinates. The boundary conditions at both ends
of the slab are vacuum boundary conditions:

Ψ(b, µ) = 0, −1 6 µ 6 0,

Ψ(−b, µ) = 0, 0 6 µ 6 1.
(18)

According to the theory in ref. [3], when the material pa-
rameters are set to Σt = 0.050 cm−1,Σs = 0.030 cm−1, νΣ f =

0.0225 cm−1, b = 66.00527544 cm, the system reaches a crit-
ical state with the effective multiplication factor keff = 1. Ta-
ble 2 provides the theoretical value of the scalar flux at dif-
ferent positions.

From a mathematical perspective, eq. (17) at the critical
state represents an eigenvalue problem, where for each eigen-
value, there are infinitely many corresponding eigenvectors
[1, 3]. To ensure numerical stability during the solution pro-
cess, the following eigenvalue constraint conditions are in-
troduced:

Ψ(0,−1) = 0.2, Ψ(0, 1) = 0.2. (19)

We define the antiderivative Fc(x, µ) =
∫ µ
−1Ψ (x, µ′) dµ′,

∂Fc
∂µ

(x, µ) = Ψ(x, µ), and rewrite the exact differential form of
eq. (17) as:

µ
∂2Fc(x, µ)
∂x∂µ

+ Σt(x)
∂Fc(x, µ)
∂µ

=
1
2

(
Σs(x) +

νΣ f (x)
keff

)
Fc(x, 1). (20)

The corresponding boundary conditions and eigenvalue con-
straints are

∂Fc

∂µ
(b, µ) = 0, −1 6 µ 6 0,

∂Fc

∂µ
(−b, µ) = 0, 0 6 µ 6 1,

∂Fc

∂µ
(0,−1) = 0.2,

∂Fc

∂µ
(0, 1) = 0.2.

(21)

In addition, the fixed solution constraint condition is

Fc(x,−1) = 0, −b 6 x 6 b. (22)

Table 1 Computational complexity of solving the neutron transport equationa)

Category Calculus terms complexity Variable discretization complexity Overall complexity

Method FDM FVM PINN FDM FVM PINN FDM FVM PINN

Discrete IDNT O
(
NΩ̂

)
O

(
NΩ̂

)
O

(
NΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr M2

Ω̂

)
O

(
Mr M2

Ω̂

)
–

Energy EDNT O (1) O (1) O (1) O
(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
O

(
Mr MΩ̂

)
–

Continuous IDNT O
(
NΩ̂NE

)
O

(
NΩ̂NE

)
O

(
NΩ̂NE

)
O

(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
O

(
Mr M2

Ω̂
M2

E

)
O

(
Mr M2

Ω̂
M2

E

)
–

Energy EDNT O (1) O (1) O (1) O
(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
O

(
Mr MΩ̂ME

)
–

a) Assume ME = NE and MΩ̂ = NΩ̂ in the overall complexity.
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Table 2 Theoretical scalar flux values for slab geometry

Parameter
Values at different x/b

0 (Center) 0.25 0.50 0.75 1.00 (Boundary)

Normalized theoretical value 1 0.94714400 0.79372641 0.55329025 0.21419206

4.1.1 Finite difference method for solving the critical single-
group slab geometry problem

In the finite difference method (FDM), a uniform grid is ap-
plied, with M and N grid cells selected in the x and µ di-
rections respectively, where hx and hµ represent the interval
lengths. To discretize the differential terms that appear in
the original integro-differential form (17) and the exact dif-
ferential form (20), the following central difference scheme
is used:

∂Ψ

∂x
(xi, µ j) =

Ψ(xi+1, µ j) − Ψ(xi−1, µ j)
2hx

,

∂Fc

∂x
(xi, µ j) =

Fc(xi+1, µ j) − Fc(xi−1, µ j)
2hx

,

∂Fc

∂µ
(xi, µ j) =

Fc(xi, µ j+1) − Fc(xi, µ j−1)
2hµ

.

(23)

For the integral terms in the original integro-differential form,
the trapezoidal rule is employed for discretization [16]:

∫ 1

−1
Ψ

(
x, µ′

)
dµ′ ≈ 1

2

N−1∑
j=1

(
Ψ(x, µ j) + Ψ(x, µ j+1)

)
hµ. (24)

The number of grid cells M × N is selected as 100 × 100,
300 × 300, and 500 × 500 respectively, and the correspond-
ing scalar flux and relative error with the theoretical value
are shown in Figure 2(a) and (b). The distribution of the
exact differential form’s antiderivative and the angular flux
distribution obtained using the FDM with M = N = 100 are
presented in Figure 2(c) and (d), respectively.

4.1.2 Finite volume method for solving the critical single-
group slab geometry problem

The finite volume method (FVM) is similar to the FDM,
which requires discretizing the domain. Uniform grids are
applied, dividing the domain into grid cells, and control vol-
umes are formed around each grid node. The crucial step of
the FVM is to integrate the governing equations over each
control volume. For the integro-differential form (17), inte-
grating over a control volume V yields:∫
∆V
µ
∂Ψ(x, µ)
∂x

dx dµ +
∫
∆V
ΣtΨ(x, µ) dx dµ

− 1
2

(
Σs(x)+

νΣ f (x)
keff

) ∫
∆V

∫ 1

−1
Ψ(x, µ′) dµ′ dx dµ = 0.

(25)

By approximating the integral terms using the trapezoidal
rule and applying the Gauss divergence theorem [21], eq.
(25) can be discretized as:

µi, jΨe − µi, jΨw + hxΣtΨi, j

− 1
4

(
Σs(x) +

νΣ f (x)
keff

)
hxhµ

N−1∑
k=1

(
Ψi,k + Ψi,k+1

)
= 0.

(26)

Similarly, the exact differential form (20) can be discretized
in the same manner:

hµµi, j
∂Fc

∂µ

∣∣∣∣∣
e
− hµµi, j

∂Fc

∂µ

∣∣∣∣∣
w
+ hxΣt( Fc|n − Fc|s)

− 1
2

(
Σs(x) +

νΣ f (x)
keff

)
hxhµFc,i,N−1 = 0.

(27)

The variablesΨ and Fc at the control volume faces, as well
as their derivatives, are approximated as follows:

Ψe ≈
Ψi, j + Ψi+1, j

2
, Ψw ≈

Ψi−1, j + Ψi, j

2
,

Fc|n =
Fc,i, j + Fc,i, j+1

2
, Fc|s =

Fc,i, j + Fc,i, j−1

2
.

∂Fc

∂µ

∣∣∣∣∣
e
=

Fc,i, j+1 + Fc,i+1, j+1 − Fc,i, j−1 − Fc,i+1, j−1

4hµ
,

∂Fc

∂µ

∣∣∣∣∣
w
=

Fc,i, j+1 + Fc,i−1, j+1 − Fc,i, j−1 − Fc,i−1, j−1

4hµ
.

(28)

For control volumes near the boundaries, the coefficients
are adjusted accordingly to account for boundary conditions
[21].

The grid sizes M × N selected for numerical verification
are the same as those in sect. 4.1.1. Figure 3(a) and (b) show
the results of scalar flux and the relative error compared to the
theoretical value, computed using the finite volume method.
When the grid size is M = N = 100, the distribution of the
exact differential form’s antiderivative and the angular flux
distribution are shown in Figure 3(c) and (d).

4.1.3 Deep learning solution for the critical single-group
slab geometry problem

In the deep learning approach, specifically using PINN
[8], we constructed two fully connected neural networks,
NΨ(x, µ) and NFc (x, µ). Each with 8 hidden layers and 16
neurons per layer, were constructed to solve for the numeri-
cal solutions Ψ(x, µ) and Fc(x, µ) of the IDNT equation and
EDNT equation respectively. The integral terms in the IDNT
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Figure 2 (Color online) Numerical results for the critical single-group slab geometry transport problem using the FDM. (a) Scalar flux density, (b) relative
error, (c) antiderivative distribution of the EDNT, (d) angular flux distribution of the EDNT.

Figure 3 (Color online) Numerical results for the critical single-group slab geometry transport problem using the FVM. (a) Scalar flux density, (b) relative
error, (c) antiderivative distribution of the EDNT, (d) angular flux distribution of the EDNT.
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equation are approximated using the trapezoidal rule as
shown in eq. (24). The network parameters were initialized
with Gaussian random distributions, and the activation func-
tion was set as tanh. Training was conducted using full-batch
training with the ADAM optimizer, leveraging automatic dif-
ferentiation [22]. The learning rate was initialized at 1×10−3,
decayed gradually to 1×10−6, and stopped after 1×105 itera-
tions. A detailed analysis of the loss function L can be found
in the ref. [15]. Additionally, a schematic of the model archi-
tecture (Figure A11) is provided in Appendix A3 to facilitate
replication of the experiments.

The network was trained using 1500, 3000, and 6000 sam-

pled points respectively. The results of scalar flux and rela-
tive errors compared to the theoretical value are shown in
Figure 4(a) and (b). When the number of sampling points
is 6000, the antiderivative distribution and the angular flux
distribution are shown in Figure 4(c) and (d).

The numerical validation results indicate that when the
same numerical method is applied to both the IDNT and the
EDNT equations, there’s not much difference in accuracy of
the numerical solutions. Additionally, Table 3 summarizes
the CPU times, maximum relative errors (MaxRE), and mean
squared errors (MSE) for solving the critical single-group
slab geometry transport problem using the FDM, FVM, and

Figure 4 (Color online) Numerical results for the critical single-group slab geometry transport problem using the PINN. (a) Scalar flux density, (b) relative
error, (c) antiderivative distribution of the EDNT, (d) angular flux distribution of the EDNT.

Table 3 CPU times and relative error results for three numerical methods applied to the critical single-group slab geometry transport problem

Method FDM FVM PINN

Grid size/Sampling points 100 × 100 300 × 300 500 × 500 100 × 100 300 × 300 500 × 500 1500 3000 6000

IDNT MaxRE 1.83 × 10−1 7.24 × 10−2 4.67 × 10−2 4.32 × 10−2 2.00 × 10−2 7.07 × 10−3 −2.62 × 10−3 −2.71 × 10−3 −9.89 × 10−4

EDNT MaxRE 1.77 × 10−1 7.12 × 10−2 4.61 × 10−2 1.26 × 10−2 9.17 × 10−3 1.36 × 10−2 −3.67 × 10−3 6.88 × 10−3 −8.75 × 10−3

IDNT MSE 4.17 × 10−4 6.02 × 10−5 2.45 × 10−5 3.78 × 10−5 7.85 × 10−6 2.60 × 10−6 1.14 × 10−6 9.15 × 10−7 7.64 × 10−7

EDNT MSE 3.80 × 10−4 5.67 × 10−5 2.32 × 10−5 5.34 × 10−6 1.02 × 10−6 6.37 × 10−7 3.40 × 10−7 3.35 × 10−7 2.25 × 10−7

IDNT time (s) 0.16 4.80 36.60 0.43 8.50 50.84 2410.33 5786.88 13350.21

EDNT time (s) 0.04 0.45 1.60 0.07 0.65 1.67 1176.75 1205.62 2235.76

Time ratio: IDNT
EDNT 4.00 9.07 22.88 6.14 13.08 30.44 2.05 4.80 5.97
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PINN. As the grid density or the number of sampling points
increases, the EDNT equation gradually demonstrates a sig-
nificantly advantage in computational efficiency over the
IDNT equation. This finding is consistent with the analysis
of computational complexity in sect. 3.3, where OEDNT(Mr ×
MΩ) ≪ OIDNT(Mr × M2

Ω
).

4.2 Single-group cylindrical geometry transport prob-
lem with fixed source

Problem Description Assuming the neutron source is
isotropic and neglecting higher-order scattering terms, the
single-group cylindrical geometry transport equation with
fixed source is as follows:√

1 − µ2

(
cos ϕ

∂Ψ

∂r
− sin ϕ

r
∂Ψ

∂ϕ

)
+ ΣtΨ = Qs + Q f , (29)

where Qs =
1

4πΣs(r)
∫ 1
−1

∫ 2π
0 Ψ (r, ϕ′, µ′) dϕ′ dµ′, and Q f =

0.2 cos
(
πr
2R

)
. The total cross section is Σt = 0.050 × 102 m−1,

and the scattering cross section is Σs = 0.030× 102 m−1. The
radius of the cylinder is R = 1.08225766 m. The boundary
conditions are vacuum conditions:

Ψ(R, ϕ, µ) = 0,
π

2
6 ϕ 6

3π
2
. (30)

Define Fc(r, ϕ, µ) =
∫ 1
−1

∫ 2π
0 Ψ (r, ϕ′, µ′) dϕ′dµ′, and

∂2[Fc(r,ϕ′,µ′)]
∂µ′∂ϕ′ = Ψ (r, ϕ′, µ′) . The corresponding exact differ-

ential form of eq. (29) can be written as:√
1 − µ2

(
cos ϕ

∂3Fc

∂µ∂ϕ∂r
− sin ϕ

r
∂3Fc

∂µ∂2ϕ

)
+ Σt
∂2Fc

∂µ∂ϕ

=
1

4π
Σs(r)Fc(r, 2π, 1) + 0.2 cos

(
πr
2R

)
.

(31)

The vacuum boundary conditions for this form are

∂2Fc(R, ϕ, µ)
∂µ∂ϕ

= 0,
π

2
6 ϕ 6

3π
2
. (32)

Additionally, the following fixed solution constraint condi-
tion are applied:

Fc(r, 0, µ) = 0, 0 6 r 6 R, −1 6 µ 6 1,

Fc(r, ϕ,−1) = 0, 0 6 r 6 R, 0 6 ϕ 6 2π.
(33)

4.2.1 Finite difference method for the single-group cylindri-
cal geometry transport problem with fixed source

Similar to the slab geometry problem, the cylindrical geom-
etry problem is also discretized using a uniform grid. Grid
cells are selected in the r, ϕ, and µ directions, with M, N, and
S grid cells respectively, where hr, hϕ and hµ represent the

interval lengths. Central difference schemes are used to dis-
cretize the differential terms in both the IDNT and EDNT
equations of the equation. For the integral terms in the
IDNT equation, the two-dimensional trapezoidal rule is used
for discretisation [16]:∫ 1

−1

∫ 2π

0
NΨ

(
ri, ϕ

′, µ′
)

dϕ′dµ′

=
1
4

S−1∑
j=1

N−1∑
k=1

(
NΨ

(
ri, ϕk, µ j

)
+NΨ

(
ri, ϕk+1, µ j

)
+NΨ

(
ri, ϕk, µ j+1

)
+NΨ

(
ri, ϕk+1, µ j+1

))
hϕhµ.

(34)

The number of grid cells M×N×S is selected as 24×24×24,
28× 28× 28, and 32× 32× 32, respectively. Since this prob-
lem lacks an analytical solution or theoretical estimate, we
use the flux results obtained from the transport simulation
code OpenMC [23] as the reference solution. The flux com-
puted from the IDNT and EDNT equations, along with their
relative errors compared to the OpenMC reference solution,
are shown in Figure 5(a) and (b). When the grid cell num-
ber is M = N = S = 32, the antiderivative of the EDNT
equation obtained using the FDM, as well as the angular flux
distribution, are shown in Figure 5(c)-(f).

4.2.2 Finite volume method for the single-group cylindrical
geometry transport problem with fixed source

The FVM for the cylindrical geometry transport problem also
employs uniform grids. Grid nodes are selected in the r, ϕ,
and µ directions, with M, N, and S nodes, and correspond-
ing control volumes are constructed around each node. As in
the slab geometry case, the control equations are integrated
over each control volume, and the discrete equations are de-
rived using the Gauss divergence theorem and the trapezoidal
integration rule (34), combined with an upwind scheme [21].

The grid sizes M×N×S selected for numerical verification
are the same as those in sect. 4.2.1. The flux computed from
the IDNT and EDNT equations, along with their relative er-
rors compared to the OpenMC reference solution, are shown
in Figure 6(a) and (b). For a grid size of M = N = S = 32,
the numerical results for the EDNT equation obtained using
the FVM are shown in Figure 6(c)-(f).

4.2.3 Deep learning method for the single-group cylindrical
geometry transport problem with fixed source

In this approach, two fully connected neural networks with
8 hidden layers and 16 neurons per layer, NΨ (r, ϕ, µ) and
NFc (r, ϕ, µ), are used to solve the original integro-differential
form Ψ (r, ϕ, µ) and the exact differential form Fc (r, ϕ, µ)
respectively. Integral terms in the IDNT equation are dis-
cretized using the trapezoidal rule (34). The rest of the
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Figure 5 (Color online) Numerical results for the single-group cylindrical geometry transport problem with fixed source using the FDM. (a) Flux density,
(b) relative error, (c) antiderivative distribution of the EDNT at r = 0, (d) antiderivative distribution of the EDNT at r = R, (e) angular flux distribution of the
EDNT at r = 0, (f) angular flux distribution of the EDNT at r = R.

training parameters and strategies are same as that of sect.
4.1.3. The model architecture schematic (Figure A12) is in
Appendix A3. The model is trained with 2000, 4000, and
8000 sampling points respectively. The flux obtained from
the IDNT and EDNT equations, along with their relative er-
rors compared to the OpenMC reference solution, are shown
in Figure 7(a) and (b). For 8000 sampling points, the numer-
ical results for the EDNT equation obtained using the PINN
are shown in Figure 7(c)-(f).

The relative errors between the numerical solutions ob-
tained from three different methods and the reference solu-
tions indicate that the EDNT and IDNT equations achieve

comparable accuracy when using the same numerical meth-
ods. Additionally, Table 4 summarizes the CPU times and
relative error results for solving the single-group cylindrical
geometry transport problem with a fixed source. As the grid
is refined or the number of sampling points increases, the
EDNT equation demonstrates a more significant advantage
in computational efficiency compared to the IDNT equation.
Compared to the slab geometry case, this advantage becomes
even more obvious. It is primarily due to the increasing
difference in complexity as the number of angular variables
grows. This result further validates the computational com-
plexity analysis presented in sect. 3.3.
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Figure 6 (Color online) Numerical results for the single-group cylindrical geometry transport problem with fixed source using the FVM. (a) Flux density,
(b) relative error, (c) antiderivative distribution of the EDNT at r = 0, (d) antiderivative distribution of the EDNT at r = R, (e) angular flux distribution of the
EDNT at r = 0, (f) angular flux distribution of the EDNT at r = R.

It is worth noting that a significant characteristics of deep
learning methods is to generate continuous solutions that are
inherent in neural networks. In contrast, traditional methods,
such as finite difference and finite volume methods, produce
discrete solutions.

4.3 Multi-material cylindrical geometry transport prob-
lem with fixed source

Problem Description In this case, we extend the single-
group cylindrical geometry transport problem to a multi-

material scenario. The transport equation form of EDNT and
IDNT is similar to that of the single-material case in sect.
4.2, but the total cross section Σt(r) and scattering cross sec-
tion Σs(r) are defined in Figure 8. The boundary conditions
remain the same as in the single-material case in sect. 4.2.

4.3.1 Finite difference method for the multi-material cylin-
drical geometry transport problem with fixed source

The problem is discretized using a uniform grid in the r, ϕ,
and µ directions. The main difference from sect. 4.2.1 lies
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Figure 7 (Color online) Numerical results for the single-group cylindrical geometry transport problem with fixed source using the PINN. (a) Flux density,
(b) relative error, (c) antiderivative distribution of the EDNT at r = 0, (d) antiderivative distribution of the EDNT at r = R, (e) angular flux distribution of the
EDNT at r = 0, (f) angular flux distribution of the EDNT at r = R.

Table 4 CPU time and relative error results for three numerical methods applied to the single-group cylindrical geometry transport problem with fixed source

Numerical method FDM FVM PINN

Grid size/Sampling points 24 × 24 × 24 28 × 28 × 28 32 × 32 × 32 24 × 24 × 24 28 × 28 × 28 32 × 32 × 32 2000 4000 8000

IDNT MaxRE 1.28 × 10−2 1.20 × 10−2 1.13 × 10−2 6.74 × 10−2 6.70 × 10−2 7.90 × 10−2 2.25 × 10−2 1.23 × 10−2 2.32 × 10−2

EDNT MaxRE 4.03 × 10−2 3.46 × 10−2 2.81 × 10−2 4.24 × 10−2 3.65 × 10−2 3.12 × 10−2 2.55 × 10−2 1.95 × 10−2 1.42 × 10−2

IDNT MSE 3.70 × 10−6 2.35 × 10−6 1.70 × 10−6 9.44 × 10−6 6.84 × 10−6 5.47 × 10−6 2.16 × 10−5 7.54 × 10−6 5.51 × 10−5

EDNT MSE 3.04 × 10−5 2.13 × 10−5 1.98 × 10−5 3.12 × 10−5 2.24 × 10−5 1.69 × 10−5 2.48 × 10−5 1.67 × 10−5 1.46 × 10−5

IDNT time (s) 17.64 91.44 538.38 9.88 40.84 163.26 12339.09 28991.51 113200.76

EDNT time (s) 0.33 1.11 3.38 0.48 1.04 2.74 2468.72 4423.05 6525.75

Time ratio: IDNT
EDNT 53.02 82.38 159.19 20.66 39.16 59.51 5.00 6.55 17.35
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Figure 8 Geometric description of multi-material cylindrical geometry
transport problem with fixed source.

in the piecewise definitions of Σt(r) and Σs(r). The integral
terms are discretized using the two-dimensional trapezoidal
rule, as described before eq. (34). The grid sizes are set as
32× 32× 32. The flux results and relative errors compared to
the OpenMC reference are shown in Figure 9(a) and (b).

4.3.2 Finite volume method for the multi-material cylindri-
cal geometry transport problem with fixed source

The FVM for the problem also employs uniform grids. Grid
nodes are selected in the r, ϕ, and µ directions, with M, N,
and S nodes, and corresponding control volumes are con-
structed around each node. The control equations are in-
tegrated over each control volume, and the discrete equa-
tions are derived using the Gauss divergence theorem and the
trapezoidal integration rule (34), combined with an upwind
scheme [21] as same as sect. 4.2.2. The grid sizes are set as
32× 32× 32. The flux results and relative errors compared to
the OpenMC reference are shown in Figure 9(a) and (b).

4.3.3 Deep learning method for the multi-material cylindri-
cal geometry transport problem with fixed source

Two fully connected neural networks, NΨ (r, ϕ, µ) and
NFc (r, ϕ, µ), are used to solve the problem. The integral terms
are discretized as same as sect. 4.2.3. The model is trained

with 4000 sampling points. The results and relative errors
compared to the OpenMC reference are presented in Figure
9(a) and (b).

Additionally, Table 5 summarizes the CPU times and rel-
ative error results of the multi-material cylindrical geome-
try transport problem with a fixed source. The results in-
dicate that EDNT achieves comparable computational accu-
racy to IDNT, while significantly improving computational
efficiency with reductions in computational time ranging
from several times to several orders of magnitude.

4.4 Non-critical two-group slab geometry transport
problem

Problem Description For the slab geometry two-group
single-material region, the two-group slab theory and trans-
port equation IDNT form are based on ref. [1]. The slab
thickness b = 50 cm, and the material properties are listed
in Table 6. We use this example to verify the applicability of
EDNT to the PINN method in multi-group scenarios.

The corresponding EDNT equation is as follows:

µ
∂Fc,1(x, µ)
∂x∂µ

+ Σt,1(x)Fc,1(x, µ)
′

=
1
2

(Σs,1−1(x)[Fc,1(x, 1)] + Σs,2−1(x)[Fc,2(x, 1)])

+
1

2keff
((νΣ f (x))1[Fc,1(x, 1)] + (νΣ f (x))2[Fc,2(x, 1)])

µ
∂Fc,2(x, µ)
∂x∂µ

+ Σt,2(x)Fc,2(x, µ)
′

=
1
2

(Σs,1−2(x)[Fc,1(x, 1)] + Σs,2−2(x)[Fc,2(x, 1)])

Fc,1(x, µ)
′
=

dFc,1(x, µ)
dµ

= Ψ1(x, µ), Fc,1(x,−1) = 0

Fc,2(x, µ)
′
=

dFc,2(x, µ)
dµ

= Ψ2(x, µ), Fc,2(x,−1) = 0

x ∈ [−0.5, 0.5], µ ∈ [−1, 1]



, (35)

Figure 9 (Color online) Numerical results for the multi-material cylindrical geometry transport problem with fixed source. (a) Flux density, (b) relative error.
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Table 5 CPU time and relative error results for three numerical methods
applied to the multi-material cylindrical geometry transport problem with
fixed source

Numerical method FDM FVM PINN

IDNT MSE 3.99 × 10−4 3.98 × 10−4 1.17 × 10−3

EDNT MSE 9.15 × 10−4 9.06 × 10−4 1.38 × 10−3

IDNT time (s) 91.78 179.76 34706.51

EDNT time (s) 0.86 7.46 4542.73

Time ratio: IDNT
EDNT 106.72 24.10 7.64

Table 6 Material properties in the calculation region of two-group slab
geometry

g Σt (cm−1) νΣf (cm−1) xg Σs,1−g (cm−1) Σs,2−g (cm−1)

1 0.33285210 0.01266922 1 0.31876071 0

2 0.44925527 0.22110247 0 0.00093413 0.31466259

where Ψ1 and Ψ2 represent the angular flux densities of the
thermal and fast groups, respectively, while Fc,1 and Fc,2 are
corresponding antiderivatives.

The PINN deep learning method and parameter choices
are as follows: Two neural networks are used to represent the
thermal group and fast group, respectively. The network ar-
chitecture, machine learning rate, and other hyperparameters
are the same as in sect. 4.1.3. During the learning process,
the weights of the two neural networks are alternately up-
dated to solve for the equation. The eigenvalue constraint for

the fast group is F′c,1(0,−1) = F′c,1(0, 1) = 1, while no eigen-
value constraint is applied to the thermal group. The detailed
methods for eigenvalue constraints and the construction of
the loss function can be found in ref. [15].

Since this problem does not have an analytical solution
or theoretical estimate, the normalized scalar flux results of
PINN are compared with that of OpenMC. The results are
shown in Figure 10 and Table 7. As shown in Figure 10, the
numerical results also provide a continuous angular flux dis-
tribution for the two-group system. The validation work for
this problem demonstrates that the EDNT is suitable for nu-
merical solution techniques based on deep learning, such as
PINN.

5 Conclusion

The neutron transport equation has various equivalent forms
suited for different numerical discretization methods. The
traditional form is not well-suited for deep learning-based
numerical methods, which typically require long training
time. To address this, the main contribution of this paper
is the proposal of a new exact differential form of the neu-
tron transport equation. By converting the integral terms in
the integro-differential neutron transport equation into their
corresponding antiderivatives, an exact differential form of
neutron transport equations is proposed, and the physical

Figure 10 (Color online) Numerical calculation results of the non-critical two-group slab geometry transport problem. (a) Comparison of fast group flux with
OpenMC software; (b) comparison of thermal group flux with OpenMC software; (c) angular flux distribution of the EDNT for the fast group; (d) angular flux
distribution of the EDNT for the thermal group.
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Table 7 Calculation results for non-critical two-group scalar flux of slab geometry

Energy group
keff Relative deviation of keff EDNT MSE Maximum absolute error of EDNT

PINN OpenMC

Fast Group
0.9346 0.9464 −3.80 × 10−2 7.93 × 10−4 5.22 × 10−2

Thermal Group 6.43×10−8 3.96×10−4

meanings of the antiderivatives are elucidated. A compar-
ative analysis of the computational complexity between the
two forms was conducted. Numerical experiments, per-
formed on typical benchmark problems using different nu-
merical methods, further verified the results.

Both theoretical analysis and numerical experiments
demonstrate that the EDNT equation is universally applica-
ble across various numerical methods, offering a significantly
advantage in computational efficiency over the IDNT equa-
tion. It approves that the EDNT equation is well-suited for
deep learning-based numerical method.

Future research is recommended to focus on improving
traditional numerical methods based on the EDNT equation
to enhance the computational effciency of current reactor
core design software, and we will apply the EDNT format to
address the corresponding continuous energy neutron trans-
port problems. In terms of numerical computation methods
involving deep learning, subsequent work should concentrate
on optimizing the construction of neural network architec-
tures. Additionally, This EDNT approach may also be ap-
plicable for other integro-differential transport theories such
as radiative energy transport and has potential application in
astrophysics or other fields.
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Appendix

A1 Derivation of the exact differential form of the con-
tinuous energy neutron transport equation

A1.1 Antiderivative transformation for scattering sources

The anisotropic scattering source in eq. (1) is given by

Qs =

"
Σs(r, E′) f

(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′. (a1)

In general, the angular flux Ψ
(
r, Ω̂, E, t

)
is a con-

tinuous function with respect to the angular variable Ω̂
and the energy E [1-3]. Suppose that the integrand
Σs(r, E′) f

(
r, Ω̂′, E′ → Ω̂, E

)
is continuous, then the in-

tegrand Σs(r, E′) f
(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
is also
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continuous. According to the principles of calculus [16],
a continuous integrand has an antiderivative with respect
to the angular variable Ω̂′ and energy E′, denoted as
Fs

(
r, Ω̂, E, Ω̂′, E′, t

)
. Referring to the two-dimensional

Newton-Leibniz formula [16], we perform an antiderivative
transformation on the scattering source terms in the neutron
transport equation (1).

For the scattering source term in eq. (1), we have

Qs =

∫ E1

E0

∫ Ω̂1

Ω̂0

Σs(r, E′) f
(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′

=Fs

(
r, Ω̂, E, Ω̂1, E1, t

)
− Fs

(
r, Ω̂, E, Ω̂1, E0, t

)
− Fs

(
r, Ω̂, E, Ω̂0, E1, t

)
+ Fs

(
r, Ω̂, E, Ω̂0, E0, t

)
,

(a2)

where Ω̂1, Ω̂0 are the upper and lower limits of the angular in-
tegral, and E1, E0 are the upper and lower limits of the energy
integral.

According to the definition of antiderivatives:

∂Fs

(
r, Ω̂, E, Ω̂′, E′, t

)
∂Ω̂′∂E′

= Σs(r, E′) f
(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
. (a3)

Based on the principles of calculus, we know that
Fs

(
r, Ω̂, E, Ω̂′, E′, t

)
is a cluster of functions. These func-

tions differ from each other by any continuous function with
respect to the variable Ω̂′, E′, and all partial derivatives of
Fs

(
r, Ω̂, E, Ω̂′, E′, t

)
must be equal.

Let F0,s

(
r, Ω̂, E, Ω̂′, E′, t

)
be one specific function, there

is Fs

(
r, Ω̂, E, Ω̂′, E′, t

)
= F0,s

(
r, Ω̂, E, Ω̂′, E′, t

)
+C

(
Ω̂′, E′

)
,

∂2C(Ω̂′,E′)
∂Ω̂′∂E′

= 0. Set

C
(
Ω̂′, E′

)
= − F0,s

(
r, Ω̂, E, Ω̂0,E′, t

)
− F0,s

(
r, Ω̂, E, Ω̂′, E0, t

)
+ F0,s

(
r, Ω̂, E, Ω̂0, E0,t

)
,

(a4)

then a specific antiderivative is given by

Fc,s

(
r,Ω̂,E,Ω̂′,E′,t

)
= F0,s

(
r,Ω̂,E,Ω̂′,E′,t

)
−F0,s

(
r,Ω̂,E,Ω̂0,E′,t

)
− F0,s

(
r,Ω̂,E,Ω̂′,E0,t

)
+F0,s

(
r,Ω̂,E,Ω̂0,E0,t

)
.

(a5)

When the conditions
(
Ω̂′ = Ω̂0

)
∪ (E′ = E0) are satisfied, we

have Fc,s

(
r, Ω̂, E, Ω̂′, E′, t

)
= 0. Therefore

∂2Fc,s

(
r,Ω̂,E,Ω̂′,E′,t

)
∂Ω̂′∂E′

=
∂2F0,s

(
r,Ω̂,E,Ω̂′,E′,t

)
∂Ω̂′∂E′

=Σs(r,E′) f
(
r,Ω̂′,E′→Ω̂,E

)
Ψ

(
r,Ω̂′,E′,t

)
.

(a6)

Thus, we find a specific function Fc,s

(
r, Ω̂, E, Ω̂′, E′, t

)
for

the cluster of antiderivatives that satisfies the given condi-
tions. Substituting into eq. (a2) yields:

Qs =

∫ E1

E0

∫ Ω̂1

Ω̂0

Σs(r, E′) f
(
r, Ω̂′, E′ → Ω̂, E

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′

=Fc,s

(
r, Ω̂, E, Ω̂1, E1, t

)
. (a7)

A1.2 Antiderivative transformation for fission sources

The isotropic fission source in eq. (1) is given by

Q f =
χ (E)
4π

"
νΣ f

(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′. (a8)

Similarly, suppose the integrand νΣ f (r, E′) is a continu-
ous function, then the integrand νΣ f (r, E′)Ψ

(
r, Ω̂′, E′, t

)
is

also continuous. Therefore, there exists an antiderivative
F f

(
r, Ω̂′, E′, t

)
for the fission source term in eq. (1), an an-

tiderivative transformation of fission sources can be given:

Q f =
χ (E)
4π

∫ E1

E0

∫ Ω̂1

Ω̂0

νΣ f
(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′

=
χ (E)
4π

(
F f

(
r, Ω̂1, E1, t

)
− F f

(
r, Ω̂1, E0, t

)
−F f

(
r, Ω̂0, E1, t

)
+ F f

(
r, Ω̂0, E0, t

))
.

(a9)

Moreover,

∂2F f

(
r, Ω̂′, E′, t

)
∂Ω̂′∂E′

= νΣ f
(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
. (a10)

Similar to the analysis for the scattering source,
F f

(
r, Ω̂′, E′, t

)
belongs to a cluster of functions, from

which a specific antiderivative Fc, f

(
r, Ω̂′, E′, t

)
can be found.

Under the conditions
(
Ω̂′ = Ω̂0

)
∪ (E′ = E0), we have

Fc, f

(
r, Ω̂′, E′, t

)
= 0 , and the following relationship holds:

∂2Fc, f

(
r, Ω̂′, E′, t

)
∂Ω̂′∂E′

= vΣ f
(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
. (a11)

Substituting the constraint conditions into eq. (a9), we ob-
tain:

Q f =
χ (E)
4π

∫ E1

E0

∫ Ω̂1

Ω̂0

νΣ f
(
r, E′

)
Ψ

(
r, Ω̂′, E′, t

)
dΩ̂′dE′

=
χ (E)
4π

Fc, f

(
r, Ω̂1, E1, t

)
.

(a12)
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A1.3 Exact differential form of the continuous energy neu-
tron transport equation

Substituting eqs. (a7) and (a12) into eq. (1), we obtain the
general exact differential form of the neutron transport equa-
tions:

1
v

∂Ψ
(
r, Ω̂, E, t

)
∂t

+ Ω̂ · ∇Ψ
(
r, Ω̂, E, t

)
+Σt (r, E)Ψ

(
r, Ω̂, E, t

)
= Fc,s

(
r, Ω̂, E, Ω̂1, E1, t

)
+
χ (E)
4π

Fc, f

(
r, Ω̂1, E1, t

)
+Qe,

∂2Fc,s

(
r, Ω̂, E, Ω̂′ , E′ , t

)
∂Ω̂

′
∂E′

= Σs(r, E′) f
(
r, Ω̂′ , E′→ Ω̂, E

)
Ψ

(
r, Ω̂′ , E′ , t

)
,

∂2Fc, f

(
r, Ω̂′ , E′ , t

)
∂Ω̂

′
∂E′

= νΣ f

(
r, E

′)
Ψ

(
r, Ω̂

′
, E

′
, t
)
,(

Ω̂′ = Ω̂0

)∪ (
E
′
= E0

)
, Fc,s

(
r, Ω̂, E, Ω̂′ , E′ , t

)
= 0,

Fc, f

(
r, Ω̂′ , E′ , t

)
= 0.

(a13)

A2 Derivation of the multigroup neutron transport
equation

A2.1 Derivation of the multigroup anisotropic scattering
equation

To simplify the calculation, the anisotropic scattering source
in eq. (2) is typically expanded using Legendre polynomials.
The anisotropic scattering source for the multigroup form [1]
can be expressed as follows:

Qs,g =

G∑
g′=1

∫
Σs,g′→g(r, Ω̂′ → Ω̂)Ψg′

(
r, Ω̂′

)
dΩ̂′

=

G∑
g′=1

∞∑
l=0

Σs,l,g′→g (r)
l∑

m=−l

Ym
l

(
Ω̂
)
Ψ

l,m
g′ .

(a14)

Here, the neutron flux moment is

Ψ
l,m
g′ =

∫
Ym

l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
dΩ̂′, (a15)

and the spherical harmonic function is

Ym
l

(
Ω̂
)
=

 Pm
l (cos θ) cos mφ, for m = 0, 1, 2, . . . , l,

Pm
l (cos θ) sin |m|φ, for m = −1,−2, . . . ,−l,

(a16)

where Pm
l is the associated Legendre polynomial. Its form is

given as:

Pm
l (µ0) =

(−1)m

2ll!

(
1 − µ2

0

)m/2 dl+m

dµl+m
0

(
1 − µ2

0

)l
, (a17)

where θ and φ are the polar and azimuthal angles of the neu-
tron motion direction, and µ0 generally denotes the direction
cosine between two different neutron motion directions. The
detailed expression can be found in ref. [1].

For the multigroup neutron transport equation (2), we ap-
ply the antiderivative transformation to the neutron flux mo-
ment in the scattering term (a14). Since the angular vari-
ables Ω̂ and Ω̂′ are decoupled, the transformation is signif-
icantly simplified. Let F l,m

s,g′
(
r, Ω̂′

)
be the antiderivative of

Ym
l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
, as described in sect. A1.1, according to

the Newton-Leibniz formula, we have

Ψ
l,m
g′ =

∫ Ω̂1

Ω̂0

Ym
l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
dΩ̂′

=F l,m
s,g′

(
r, Ω̂1

)
− F l,m

s,g′
(
r, Ω̂0

)
. (a18)

Moreover,

F l,m
s,g′

(
r, Ω̂′

)′
=

d

dΩ̂′

∫ Ω̂′

Ω̂0

Ym
l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
dΩ̂′

=Ym
l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
.

(a19)

Similarly, there exists a specific function F l,m
c,s,g′ such that

F l,m
c,s,g′

(
r, Ω̂0

)
= 0 when Ω̂′ = Ω̂0. Hence,

Ψ
l,m
g′ =

∫ Ω̂1

Ω̂0

Ym
l

(
Ω̂′

)
Ψg′

(
r, Ω̂′

)
dΩ̂′ = F l,m

c,s,g′
(
r, Ω̂1

)
. (a20)

Substituting this into eq. (a14), we get

Qs,g =

G∑
g′=1

∞∑
l=0

Σs,l,g′→g (r)
l∑

m=−l

Ym
l

(
Ω̂
)

F l,m
c,s,g′

(
r, Ω̂1

)
. (a21)

Similarly, for the fission source in the multigroup transport
equation, we have

∫ Ω̂1

Ω̂0

Ψg′
(
r, Ω̂′

)
dΩ̂′ = F f ,g′

(
r, Ω̂1

)
− F f ,g′

(
r, Ω̂0

)
, (a22)

and there exists a specific function Fc, f ,g′
(
r, Ω̂′

)
, under the

conditions Ω̂′ = Ω̂0, Fc, f ,g′
(
r, Ω̂′

)
= 0, and it satisfies the

following equation:

F l,m
c, f ,g′

(
r, Ω̂′

)′
=

dFc, f ,g′
(
r, Ω̂′

)
dΩ̂′

= Ψg′
(
r, Ω̂′

)
. (a23)
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Thus, we obtain

Ω̂ · ∇Ψg

(
r, Ω̂

)
+ Σt,g

(
r, Ω̂

)
Ψg

(
r, Ω̂

)
=

G∑
g′=1

∞∑
l=0

Σs,l,g′→g (r)
l∑

m=−l

Ym
l

(
Ω̂
)

F l,m
c,s,g′

(
r, Ω̂1

)
+
χg

4πkeff

G∑
g′=1

(
νΣ f (r)

)
g′Fc, f ,g′

(
r, Ω̂1

)
,

dF l,m
c,s,g′

(
r, Ω̂′

)
dΩ̂′

= Ym
l

(
Ω̂
′)
Ψg′

(
r, Ω̂′

)
,

dFc, f ,g′
(
r, Ω̂′

)
dΩ̂′

= Ψg′
(
r, Ω̂′

)
,

Ω̂
′
= Ω̂0, Fc,s,g′

(
r, Ω̂, Ω̂′

)
= 0, Fc, f ,g′

(
r, Ω̂′

)
= 0.

(a24)

A2.2 Derivation of the multigroup isotropic scattering neu-
tron transport equation

With isotropic scattering cross sections, the scattering source
is independent of the angular variable and can be written as
Σs,g′→g(r), reducing eq. (2) to

Ω̂ · ∇Ψg

(
r, Ω̂

)
+ Σt,g

(
r, Ω̂

)
Ψg

(
r, Ω̂

)
=

G∑
g′=1

Σs,g′→g(r)
∫
Ψg′

(
r, Ω̂′

)
dΩ̂′

+
χg

4πkeff

G∑
g′=1

(
νΣ f (r)

)
g′

∫
Ψg′

(
r, Ω̂′

)
dΩ̂′

=

G∑
g′=1

(
Σs,g′→g(r)+

χg

4πkeff

(
νΣ f (r)

)
g′

)∫
Ψg′

(
r, Ω̂′

)
dΩ̂′.

(a25)

By transforming the integral term
∫
Ψg′

(
r, Ω̂′

)
dΩ̂′, we

can obtain its specific antiderivative Fc,g′
(
r, Ω̂′

)
. When Ω̂′ =

Ω̂0, Fc,g′
(
r, Ω̂0

)
= 0, and the corresponding exact differential

form of the transport equation is given by

Ω̂ · ∇Ψg

(
r, Ω̂

)
+ Σt,g

(
r, Ω̂

)
Ψg

(
r, Ω̂

)
=

G∑
g′=1

(
Σs,g′→g(r) +

χg

4πkeff

(
νΣ f (r)

)
g′

)
Fc,g′

(
r, Ω̂1

)
.

(a26)

Moreover, dFc,g′(r,Ω̂′)
dΩ̂′

= Ψg′
(
r, Ω̂′

)
. Replacing Ω̂′ with Ω̂ and

g′ with g, we have

Fc,g

(
r, Ω̂

)′
=

dFc,g

(
r, Ω̂

)
dΩ̂

= Ψg

(
r, Ω̂

)
. (a27)

If the angular is two-dimensional variable, then

Fc,g

(
r, Ω̂

)′
=
∂2Fc,g (r, µ, φ)
∂µ∂φ

= Ψg (r, µ, φ) . (a28)

Substituting into eq. (a24), we obtain


Ω̂ · ∇Fc,g

(
r, Ω̂

)′
+ Σt,g

(
r, Ω̂

)
Fc,g

(
r, Ω̂

)′
= dl

G∑
g′=1

(
Σs,g′→g(r) +

χg

4πkeff

(
νΣ f (r)g′

)
Fc,g′

(
r, Ω̂1

))
,

Ω̂′ = Ω̂0, Fc,g′
(
r, Ω̂0

)
= 0, g′ = 1, 2, 3, · · · .

(a29)

A3 PINN architecture for solving single-group slab and
cylindrical transport problems

Figures A11 and A12 illustrate the PINN architectures for
solving single-group slab and cylindrical geometry transport
problems, respectively. Both architectures employ fully con-
nected neural networks with 8 hidden layers, each containing
16 neurons and utilizing the tanh activation function. The
network outputs, denoted as NΨ and NF , correspond to the
solutions of the IDNT and EDNT, respectively. The whole
loss function L comprises the residual loss Lr of transport
equation at Nr collocation points set, boundary condition loss
Lb at Nb collocation points set, eigenvalue constraint loss Le

at Ne collocation points set, and fixed solution constraint con-
dition loss L f at N f collocation points set. During training,
the loss function L is minimized using the Adam optimizer
via backpropagation.
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Figure A11 (Color online) PINN architecture for solving the critical single-group slab geometry problem. IDNT (top) and EDNT (bottom).

Figure A12 (Color online) PINN architecture for the single-group cylindrical geometry transport problem with fixed source. IDNT (top) and EDNT (bottom).
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